اصل توازی اقلیدساصل توازی اقلیدس اصل پنجم از اصول موضوع یا مصادرات هندسۀ اقلیدسی است. امروزه آن را به صورتی که به نام پلیفر (Playfair) (۱۷۴۸-۱۸۱۹م/۱۱۶۱-۱۲۳۴ق) معروف شده است. که عبارت است از نقطهای مفروض در خارج یک خط میتوان یک خط و تنها یک خط به موازات آن رسم کرد. اصول اقلیدس از جمله آثاری است که با آغاز توجه مسلمانان به آثار یونانی ترجمه شد و از همان ابتدا شروح مختلفی به زبان عربی بر آن نوشته شد. فهرست مندرجات۲ - پیشینه تاریخی اصل توازی ۲.۱ - نظریهپردازان دوره اسلامی ۲.۱.۱ - جوهری و اسحاق کندی ۲.۱.۲ - ثابت بن قره ۲.۱.۳ - ابوالعباس نیریزی ۲.۱.۴ - ابنهیثم ۲.۱.۵ - خیام ۲.۱.۶ - حسامالدین سالار و علمالدین حنفی ۲.۱.۷ - قاضیزادۀ رومی ۲.۱.۸ - اثیرالدین ابهری تحریری ۲.۱.۹ - نصیرالدین طوسی ۲.۱.۱۰ - محییالدین مغربی ۲.۱.۱۱ - قطبالدین شیرازی ۲.۲ - نظریهپردازان اروپایی ۲.۲.۱ - ویتلو ۲.۲.۲ - لِوی بن گرسون و آلفونسو ۲.۲.۳ - گریسوگونو ۲.۲.۴ - کریستف کلاویوس ۲.۲.۵ - پیترو کاتالدی ۲.۲.۶ - ویتاله جوردانو ۲.۲.۷ - جان والیس ۲.۲.۸ - جیرو لامو ساکری ۲.۳ - نظریهپردازان هندسههای نااقلیدسی ۳ - فهرست منابع ۴ - پانویس ۵ - منبع ۱ - توازی از دیدگاه اقلیدساقلیدس (ه م) در مقالۀ نخست اصول، فهرستی از پیشفرضهای بنیادین هندسۀ خود متشکل از تعاریف، اصول متعارف و اصول موضوع (مصادرات) آورده است که مناقشه انگیزترین آنها اصل پنجم است که در آن چنین میگوید: «اگر خط راستی دو خط راست دیگر را چنان قطع کند که در یک سو زاویههایی داخلی با مجموع کمتر از دو قائمه پدید آورد، اگر آن دو خط به مقدار نامعلومی امتداد داده شوند، در همان سو با هم برخورد میکنند.» [۱]
Heath, Th L, The Thirteen Book of Euclid’s Elements, New York, ۱۹۵۶، ج۱، ص۱۵۵.
[۲]
Greenberg, M J, Euclidean and non،Euclidean Geometries, San Francisco, ۱۹۸۰، ج۱، ص۱۶-۱۷.
نکتۀ اصلی اینجا ست که اقلیدس از این اصل تا پیش از قضیۀ۲۹ از کتاب نخست اصول، بهرغم امکان سادهسازی اثبات قضایای پیش از آن، استفاده نکرده که این امر به نظر برخی حاکی از عدم تمایل او برای اصل قرار دادن آن است. [۳]
Heath, Th L, The Thirteen Book of Euclid’s Elements, New York, ۱۹۵۶، ج۱، ص۱۱۹.
[۴]
Hogendijk, J P,» Al،Nayrīzī’s Own Proof of Euclid’s Parallel Postulate «, Sic Itur ad Astra, Studien zur Geschichte der Mathematik und Naturwissenschaften, Wiesbaden, ۲۰۰۰، ج۱، ص۲۵۲.
ولی به این منظور او ناچار میبود، آن را با استفاده از مقدمات دیگر و ۲۸ قضیۀ نخست ثابت کند. این آرمانی است که بسیاری از هندسهدانان بعدی طی بیش از دو هزار سال درصدد تحقق آن برآمدند. کوششهای بسیاری برای اثبات این اصل صورت گرفت که بیشتر آنها نادرست و اغلب متضمن اثبات قضیهای همارز خود اصل پنجم بودند.از کسانیکه در سنت اسکندرانی برای تعریف یا نظریهپردازی دربارۀ اصل توازی تلاش کردند، میتوان به ارشمیدس (ه م)، پوسیدونیوس (۱۳۵-۴۴قم)، بطلمیوس (ه م)، پرُکلُس (ه م)، اغانیس (که تنها از طریق آثار عربی شناخته شده است)، و سرانجام سیمپلیکیوس (اواخر سدۀ ۵ و نیمۀ نخست سدۀ ۶ م) اشاره کرد. ۲ - پیشینه تاریخی اصل توازیاصول اقلیدس از جمله آثاری است که با آغاز توجه مسلمانان به آثار یونانی ترجمه شد و از همان ابتدا شروح مختلفی به زبان عربی بر آن نوشته شد. [۵]
GAS، ج۵، ص۱۰۵-۱۲۰.
به نظر برخی «مرحلۀ عربی تاریخ اصول»، دارای متنوعترین وجوه و بیشترین خلاقیت بوده است و در مقام مقایسه، هیچ بحث زنده و خلاقی نظیر متون عربی، دربارۀ اصل توازی و دیگر مقدمات کتاب اصول، در متونی که در سدههای بعد به لاتینی نوشته شد، دیده نمیشود. [۶]
Dictionary of Scientific Biography, New York, ۱۹۷۱، ج۴، ص۴۴۸.
۲.۱ - نظریهپردازان دوره اسلامیچنان مینماید که نخستین نظریهپرداز دورۀ اسلامی در زمینۀ خطوط متوازی عبارتند از: ۲.۱.۱ - جوهری و اسحاق کندیعباس بن سعید جوهری (ه م) است که در روزگار مأمون (حک ۱۹۸-۲۱۸ق) در بغداد میزیست. [۷]
قربانی، ابوالقاسم، زندگینامۀ ریاضیدانان دورۀ اسلامی، ج۱، ص۲۱۵، تهران، ۱۳۶۵ش.
او در اثر خود با عنوان اصلاح اصول اقلیدس ــ که ظاهراً بر جای نمانده ــ با ارائۀ ۶ قضیه در اثبات اصل توازی کوشیده است. [۸]
نصیرالدین طوسی، الرسالة الشافیة عن الشک فی الخطوط المتوازیة، ج۱، ص۱۸-۲۴، حیدرآباد دکن، ۱۳۵۹ق.
پس از وی به نامهای یعقوب بن اسحاق کندی (د ح۲۵۲ق/ ۸۶۶م)، بنوموسی و محمد بن عیسی ماهانی (د ح۲۷۵ق) (ه مم) بر میخوریم که از تلاشهای آنها در این باره، تنها از طریق رسالهای در اثبات اصل توازی از مؤلفی ناشناس [۹]
Krause, M,» Stambuler handschriften islamischer mathematiker «, Quellen und Studien zur geschichte der mathematik, astronomie und physic, Frankfurt, ۱۹۳۶، ج۱، ص۵۲۲.
و اشارهای از بیرونی [۱۰]
بیرونی، ابوریحان، استخراج الاوتار فی الدائرة، ج۱، ص۱۸۰-۱۸۴، حیدرآباد دکن، ۱۳۶۷ق/۱۹۴۸م.
آگاهی داریم.۲.۱.۲ - ثابت بن قرهثابت بن قره (ه م) ضمن اصلاح ترجمۀ اسحاق بن حنین از اصول که به ترجمۀ اسحاق ـ ثابت معروف است، در دو رسالۀ کوچک و با دو روش در اثبات اصل توازی کوشید. او در یکی از این دو روش از مفهوم «حرکت» در اثبات گزارۀ توازی استفاده کرد. [۱۱]
Sabra, A I,» Thabit ibn Qurra on Euclid’s Parallels Postulate «, Journal of the Warburg and, Coutauld Institutes, London, ۱۹۶۸, vol XXXI، ج۱، ص۱۲.
۲.۱.۳ - ابوالعباس نیریزیابوالعباس نیریزی (ه م) شرح مفصلی از اصول اقلیدس را فراهم آورد و در اثر خود شرح اصول، روش اثبات اغانیس و برخی از نظریات سیمپلیکیوس را ذکر نمود. [۱۲]
نیریزی، فضل، شرح اصول اقلیدس، ج۱، ص۸، به کوشش هایبرگ، لایپزیگ، ۱۸۹۹م.
[۱۳]
نیریزی، فضل، شرح اصول اقلیدس، ج۱، ص۱۱۸، به کوشش هایبرگ، لایپزیگ، ۱۸۹۹م.
وی همچنین در رسالهای روش مستقل خود را بیان کرده است. [۱۴]
قربانی، ابوالقاسم، ریاضیدانان ایرانی، ج۱، ص۸۶-۸۷، تهران، ۱۳۵۰ش.
[۱۵]
Hogendijk, J P,» Al،Nayrīzī’s Own Proof of Euclid’s Parallel Postulate «, Sic Itur ad Astra, Studien zur Geschichte der Mathematik und Naturwissenschaften, Wiesbaden, ۲۰۰۰، ج۱، ص۲۵۲..
از کسانی چون ابوجعفر خازن، یوحنا القس و ابوعبدالله شَنّی (ه مم) هم در زمرۀ کسانی که به این مبحث پرداختهاند، یاد شده است، اما اثری از روش ایشان بر جای نمانده است. [۱۶]
ابنندیم، الفهرست، ج۱، ص۵۰۵، به کوشش فلوگل، لایپزیگ، ۱۸۷۱-۱۸۷۲م.
[۱۷]
خیام، «شرح ما اشکل من مصادرات کتاب اقلیدس»، ج۱، ص۱۷۸، همراه خیامینامه.
[۱۸]
نصیرالدین طوسی، الرسالة الشافیة عن الشک فی الخطوط المتوازیة، ج۱، ص۳۸، حیدرآباد دکن، ۱۳۵۹ق.
۲.۱.۴ - ابنهیثمابنهیثم (ه م) در دو اثر مستقل با عنوانهای حل شکوک کتاب اقلیدس فی الاصول و شرح معانیه و شرح مصادرات اقلیدس به مسئلۀ توازی و اثبات اصل توازی پرداخته است. وی از جمله کسانی است که از دیدگاه منطقی ـ فلسفی، برخی از اصول موضوعه (ه م) و نیز تعریف خطوط متوازی اقلیدس را نقد میکند. [۱۹]
ابنهیثم، حسن، شرح مصادرات اقلیدس، ج۱، ص۱۶-۱۷، به کوشش فؤاد سزگین، فرانکفورت، ۲۰۰۰م.
در تعریف توازی، عمدۀ نقد او متوجه قید «نامعلوم» برای امتداد خطوط است که وی در اینجا آن را «بینهایت» تعبیر کرده است. به نظر میرسد که ابنهیثم مفاهیم اقلیدسی «نامعلوم» و «نامتعین» [۲۰]
Heath, Th L, The Thirteen Book of Euclid’s Elements, New York, ۱۹۵۶، ج۱، ص۲۳۴.
را به «نامحدود» یا «بینهایت» تعبیر کرده است و وجود دو خط را که تا بینهایت ادامه یابند، «غیرقابل تخیل» دانسته است دربارۀ قوۀ خیال، مثلاً «تخیل، صورت را مجرد و منتزع میکند از ماده نه از لواحق آن.» [۲۱]
ابنسینا، النجاة، ج۱، ص۳۴۶، به کوشش محمدتقی دانشپژوه، تهران، ۱۳۶۴ش.
[۲۲]
خیام، «شرح ما اشکل من مصادرات کتاب اقلیدس»، ج۱، ص۱۸۵، همراه خیامینامه.
وی با به کارگیری گونهای از «حرکت» که خود ویژگیهای آن را برمیشمرد، روشی برای «تخیل» دو خط با این وصف ارائه میکند و پس از ذکر مقدماتی نتیجه میگیرد که قول اقلیدس در تعریف دو خط متوازی نادرست است، اما با این حال، وجود دو خط متوازی ممکن و قابل تخیل است. [۲۳]
ابنهیثم، حسن، شرح مصادرات اقلیدس، ج۱، ص۱۶-۱۷، به کوشش فؤاد سزگین، فرانکفورت، ۲۰۰۰م.
البته در متن، او مصادرۀ پنجم را با همان قید «امتداد بغیر نهایة» آورده است. [۲۴]
ابنهیثم، حسن، شرح مصادرات اقلیدس، ج۱، ص۳۱-۳۴، به کوشش فؤاد سزگین، فرانکفورت، ۲۰۰۰م.
در برهان مبسوط او برای اثبات توازی [۲۵]
ابنهیثم، حسن، شرح مصادرات اقلیدس، ج۱، ص۳۴-۴۰، به کوشش فؤاد سزگین، فرانکفورت، ۲۰۰۰م.
از وجود یک چهارضلعی با ۳ زاویۀ قائمه و زاویۀ چهارم نامعلوم استفاده شده که امروزه به نام چهارضلعی لامبرت (د ۱۷۷۷م/۱۱۹۱ق) مشهور است. [۲۶]
Juschkewitsch, A and B A Rosenfeld, Die Mathematik der länder des ostens im mittelalter, Berlin, ۱۹۶۳، ج۱، ص۱۴۹.
[۲۷]
روزنفلد، ب ا و ا پ یوشکویچ، نظریة الخطوط المتوازیة فی المصادر العربیة مابین القرنین الثالث و الثامن للهجرة، ج۱، ص۱۰۴، ترجمۀ سامی شلهوب و کمال نجیب عبدالرحمان، حلب، ۱۴۰۹ق/۱۹۸۹م.
[۲۸]
Greenberg, M J, Euclidean and non،Euclidean Geometries, San Francisco, ۱۹۸۰، ج۱، ص۱۲۷.
[۲۹]
Eves, H, An Introduction to the History of Mathematics, New York, ۱۹۶۹، ج۱، ص۱۲۶.
ابن هیثم در حل شکوک... یادآور شده است که این مصادره با این عبارت که دو خط متقاطع، با یک خط دیگر، موازی نیستند، همارز است، وی این عبارت را معادل اصل پنجم، به صورتی که در اصول اقلیدس آمده، میشمارد، جز اینکه آن را از اصل پنجم روشنتر، محسوستر و از لحاظ روانی پذیرفتنیتر میداند، [۳۰]
ابنهیثم، حسن، حل شکوک کتاب اقلیدس فی الاصول و شرح معانیه، ص۲۵-۲۶، به کوشش فؤاد سزگین، فرانکفورت، ۱۹۸۵م.
اما این نظر او از سوی نصیرالدین طوسی انتقاد میشود. [۳۱]
نصیرالدین طوسی، الرسالة الشافیة عن الشک فی الخطوط المتوازیة، ج۱، ص۵-۷، حیدرآباد دکن، ۱۳۵۹ق.
۲.۱.۵ - خیامخیام (ه م) نیز در اثری با عنوان شرح ما اشکل من مصادرات اقلیدس به این موضوع پرداخته است. او در ابتدا ضمن معرفی اسلاف خود در این زمینه، آراء ایشان را نقد کرده، و در نهایت هیچیک را قابل جایگزینی برای اصل توازی یا اثباتکنندۀ آن ندانستـه است. به عنوان نمونه او انتقاداتی ــ اغلب فلسفی ــ را به مقدمات و مبانی برهان ابنهیثم ــ بـهویژه دربـارۀ حرکت ــ وارد میکند. در ادامۀ کتاب، خیام با ارائۀ ۸ قضیه به اثبات گزارۀ توازی پرداخته است. او هم مانند ابن هیثم از یک چهار ضلعی، و این بار با فرض دو زاویۀ قائمه و دو زاویۀ نامعلوم برای آن، استفاده کرده [۳۲]
خیام، «شرح ما اشکل من مصادرات کتاب اقلیدس»، ج۱، ص۱۸۴، همراه خیامینامه.
که امروزه به نام چهارضلعی ساکری (د ۱۷۳۳م) معروف است. [۳۳]
Greenberg, M J, Euclidean and non،Euclidean Geometries, San Francisco, ۱۹۸۰، ج۱، ص۱۲۵.
[۳۴]
Juschkewitsch, A and B A Rosenfeld, Die Mathematik der länder des ostens im mittelalter, Berlin, ۱۹۶۳، ج۱، ص۱۵۱.
[۳۵]
Dictionary of Scientific Biography, New York, ۱۹۷۱، ج۷، ص۳۲۹.
[۳۶]
Eves, H, An Introduction to the History of Mathematics, New York, ۱۹۶۹، ج۱، ص۱۲۵-۱۲۶.
۲.۱.۶ - حسامالدین سالار و علمالدین حنفیحسامالدین علی بن فضلالله سالار (زنده در ۵۱۳ ق) [۳۷]
قربانی، ابوالقاسم، زندگینامۀ ریاضیدانان دورۀ اسلامی، ج۱، ص۲۲۶، تهران، ۱۳۶۵ش.
در رسالۀ کوچکی با عنوان «مقدمات لتبیین المصادرة التی ذکرها اوقلید فی صدر المقالة الاولی فیما یتعلق بالخطوط المتوازیة» با به کارگیری ۶ قضیه به اثبات گزارۀ توازی پرداخته است. [۳۸]
حسامالدین علی بن فضلالله سالار، «مقدمات لتبیین المصادرة التی ذکرها اوقلید فی صدر المقالة الاولی فیما یتعلق بالخطوط المتوازیة»، ج۱، ص۲۸۵-۲۹۴، چ تصویری همراه خیامینامه، به کوشش جلالالدین همایی.
که شباهت بسیاری به برهان خیام دارد.پس از او، علمالدین قیصر بن ابیالقاسم حنفی (د ۶۴۹ ق) است که از نقد او بر برهان سیمپلیکیوس [۳۹]
همایی، جلالالدین، خیامینامه، ج۱، ص۲۹۹، تهران، ۱۳۴۶ش.
به واسطۀ مکاتباتش با خواجه نصیرالدین طوسی اطلاع داریم. [۴۰]
نصیرالدین طوسی، الرسالة الشافیة عن الشک فی الخطوط المتوازیة، ج۱، ص۳۶، حیدرآباد دکن، ۱۳۵۹ق.
۲.۱.۷ - قاضیزادۀ رومیقاضیزاده رومی (ه م) برهانی از اثیرالدین ابهری (ه م) را که بیشباهت به روش سیمپلیکیوس نیست، در شرح خود بر اَشکال التأسیس شمسالدین سمرقندی (د ح۶۷۵ ق) آورده است. [۴۱]
قاضیزادۀ رومی، شرح بر اشکال التأسیس سمرقندی، ج۱، ص۱۱۹-۱۲۵، به کوشش محمد سویسی، تونس، ۱۹۸۴م.
۲.۱.۸ - اثیرالدین ابهری تحریریاثیرالدین ابهری تحریری از اصول با عنوان اصلاح اصول اقلیدس نیز فراهم آورده که متضمن برهان دیگر او در اثبات اصل توازی است (گ ۱۷ ر ـ ۲۰ ر). این برهان دقیقاً با اثبات دیگری برای اصل توازی که ضمن تحریری از اصول اقلیدس به سال ۱۵۹۴م در رم به چاپ رسیده، و اشتباهاً به نصیرالدین طوسی منتسب شده، منطبق است. [۴۲]
نصیرالدین طوسی، تحریر اصول اقلیدس، ص ۲۸-۳۳، چ سنگـی، رم، ۱۵۹۴م.
این چاپ که همچنان شهرت انتساب به نصیرالدین طوسی را حفظ کرده، به جهت استناد توسط جان والیس و پس از او ساکری از شهرت بسیاری برخوردار است و از اینرو برخی این اثر را تأثیرگذارترین کتاب دورۀ اسلامی در پیدایش هندسۀ نااقلیدسی دانستهاند. [۴۳]
روزنفلد، ب ا و ا پ یوشکویچ، نظریة الخطوط المتوازیة فی المصادر العربیة مابین القرنین الثالث و الثامن للهجرة، ج۱، ص۱۷، ترجمۀ سامی شلهوب و کمال نجیب عبدالرحمان، حلب، ۱۴۰۹ق/۱۹۸۹م.
[۴۴]
روزنفلد، ب ا و ا پ یوشکویچ، نظریة الخطوط المتوازیة فی المصادر العربیة مابین القرنین الثالث و الثامن للهجرة، ج۱، ص۱۴۷-۱۴۹، ترجمۀ سامی شلهوب و کمال نجیب عبدالرحمان، حلب، ۱۴۰۹ق/۱۹۸۹م.
۲.۱.۹ - نصیرالدین طوسینصیرالدین طوسی (ه م) افزون بر تحریر اصول اقلیدس که برهان او را دربارۀ توازی دربر دارد. [۴۵]
نصیرالدین طوسی، تحریر اصول اقلیدس، ص۱۶-۲۲، چ سنگی، تهران، ۱۲۹۸ق.
رسالۀ مستقلی در این باب با عنوان الرسالة الشافیة عن الشک فی الخطوط المتوازیة تصنیف کرده است.او در این کتاب نخست همانند خیام، اقوال برخی پیشینیان از جمله ابنهیثم، خیام و جوهری را آورده، و نقد کرده است. [۴۶]
نصیرالدین طوسی، الرسالة الشافیة عن الشک فی الخطوط المتوازیة، ج۱، ص۵-۷، حیدرآباد دکن، ۱۳۵۹ق.
[۴۷]
نصیرالدین طوسی، الرسالة الشافیة عن الشک فی الخطوط المتوازیة، ج۱، ص۷-۱۷، حیدرآباد دکن، ۱۳۵۹ق.
[۴۸]
نصیرالدین طوسی، الرسالة الشافیة عن الشک فی الخطوط المتوازیة، ج۱، ص۱۸-۲۴، حیدرآباد دکن، ۱۳۵۹ق.
و آنگاه همین برهان را بهطور مبسوط در ۸ قضیه بیان کرده است. [۴۹]
نصیرالدین طوسی، تحریر اصول اقلیدس، ص۲۶-۳۴، چ سنگـی، تهران، ۱۲۹۸ق.
گرینبرگ از کار نصیرالدین طوسی به عنوان مهمترین تلاش پس از پرکلس تا جان والیس (۱۷۰۳م) برای اثبات اصل توازی نام برده است. [۵۰]
Greenberg, M J, Euclidean and non،Euclidean Geometries, San Francisco, ۱۹۸۰، ج۱، ص۱۲۳.
۲.۱.۱۰ - محییالدین مغربیمحییالدین مغربی (نک : ه د، ابن ابیالشکر) نیز تحریری از اصول نوشته است و دو برهان بر این قضیه در دو اثر خود آورده که مشابه روش ابنهیثم و نصیرالدین طوسی است. [۵۱]
روزنفلد، ب ا و ا پ یوشکویچ، نظریة الخطوط المتوازیة فی المصادر العربیة مابین القرنین الثالث و الثامن للهجرة، ج۱، ص۱۶۵-۱۶۸، ترجمۀ سامی شلهوب و کمال نجیب عبدالرحمان، حلب، ۱۴۰۹ق/۱۹۸۹م.
۲.۱.۱۱ - قطبالدین شیرازیظاهراً قطبالدین شیرازی (ه م) آخرین هندسهدان مسلمان است که در این زمینه اظهار نظر کرده، و شرح روش خود را در درة التاج آورده است. [۵۲]
قطبالدین شیرازی، محمود، درة التاج، نسخۀ خطی شم ۵۶۰ کتابخانۀ سپهسالار.
[۵۳]
روزنفلد، ب ا و ا پ یوشکویچ، نظریة الخطوط المتوازیة فی المصادر العربیة مابین القرنین الثالث و الثامن للهجرة، ج۱، ص۱۶۹، ترجمۀ سامی شلهوب و کمال نجیب عبدالرحمان، حلب، ۱۴۰۹ق/۱۹۸۹م.
۲.۲ - نظریهپردازان اروپاییدر سدههای ۷-۱۳ق/۱۳-۱۹م برخی از آثار دورۀ اسلامی دربارۀ نظریۀ خطوط موازی توسط اروپاییان اقتباس گردیده، و یا به نقد کشیده شده، و گاه تأثیرات غیرقابل انکاری بر نظریات ایشان داشته است که در ادامه برخی از شواهد آن ارائه میگردد: ۲.۲.۱ - ویتلوویتلو (سدۀ۱۳-۱۴م)، از مردم لهستان در رسالۀ «نورشناخت (Perspectiva)» خود که تحت تأثیر ابن هیثم نگاشته، و ریزنِر آن را در ۱۵۷۲م در بازل به ضمیمۀ ترجمۀ لاتینی المناظر ابن هیثم به چاپ رسانده است، برهانی بر مصادرۀ پنجم با تأثیر از براهین دورۀ اسلامی آورده است، هرچند سطح بسیار پایینتری نسبت به آنها دارد. [۵۴]
Steinschneider, M, Die Europäischen Übersetzungen aus dem Arabischen bis Mitte des ۱۷, Jahrhunderts, Graz, ۱۹۵۶.، ص۸۲.
[۵۵]
روزنفلد، ب ا و ا پ یوشکویچ، نظریة الخطوط المتوازیة فی المصادر العربیة مابین القرنین الثالث و الثامن للهجرة، ج۱، ص۱۷۴-۱۷۵، ترجمۀ سامی شلهوب و کمال نجیب عبدالرحمان، حلب، ۱۴۰۹ق/۱۹۸۹م.
۲.۲.۲ - لِوی بن گرسون و آلفونسولوی بن گرسون (د ۱۳۴۴م) و آلفونسو اهل وایادولید (د ۱۳۴۶م) در آثار خود که به زبان عبری است، برهانهایی همانند براهین ثابت بن قره، ابنهیثم و خیام ارائه دادهاند. آلفونسو برهان اغانیس را با عنوان برهان نیریزی نقد کرده، سپس برهان خود را به پیروی از ثابت بن قره و ابنهیثم آورده است. [۵۶]
روزنفلد، ب ا و ا پ یوشکویچ، نظریة الخطوط المتوازیة فی المصادر العربیة مابین القرنین الثالث و الثامن للهجرة، ج۱، ص۱۷۵-۱۷۹، ترجمۀ سامی شلهوب و کمال نجیب عبدالرحمان، حلب، ۱۴۰۹ق/۱۹۸۹م.
۲.۲.۳ - گریسوگونومورد دیگر گریسوگونو (۱۴۷۲-۱۵۳۸م)، هندسهدان اهل یوگسلاوی است که در فصل ۹ از رسالهاش به خطوط متوازی پرداخته، و در آن آثار بسیاری از هندسهدانان اسلامی را آورده، و نقد کرده است. [۵۷]
روزنفلد، ب ا و ا پ یوشکویچ، نظریة الخطوط المتوازیة فی المصادر العربیة مابین القرنین الثالث و الثامن للهجرة، ج۱، ص۱۸۰، ترجمۀ سامی شلهوب و کمال نجیب عبدالرحمان، حلب، ۱۴۰۹ق/۱۹۸۹م.
۲.۲.۴ - کریستف کلاویوسدر۱۵۷۴م کریستف کلاویوس، کشیش یسوعی برهان تازهای بر توازی در ضمن شرح خود بر اصول اقلیدس عرضه کرد. او نام مشخصی از هندسهدانان اسلامی یاد نکرده، اما نوشته است که: «من میدانم که نظیر این برهان در برخی شروح اقلیدس به زبان عربی نیز آمده، اما هرگز فرصت خواندن آن را نداشتهام، هرچند نزد کسانی که اقلیدس را به عربی میدانستهاند، بارها شاگردی کردهام.» برهان او نیز به برهان ثابت بن قره و ابنهیثم شباهت بسیار دارد؛ همچنانکه از چهارضلعی خیام نیز سود برده است. [۵۸]
خیام، «شرح ما اشکل من مصادرات کتاب اقلیدس»، ج۱، ص۱۸۱، همراه خیامینامه.
۲.۲.۵ - پیترو کاتالدیدر آغاز سدۀ ۱۷م دو اثر از پیترو کاتالدی (۱۵۴۸-۱۶۲۶م) دربارۀ اصول توازی منتشر شد. او در مقدمات برهان خود از گزارهای که خیام آن را به ارسطو نسبت داده، استفاده کرده است. [۵۹]
خیام، «شرح ما اشکل من مصادرات کتاب اقلیدس»، ج۱، ص۱۸۳، همراه خیامینامه.
جاکومو آلفونسو بورلّی (۱۶۰۸-۱۶۷۹م) در اثر خود، «احیاء اقلیدس (Euclides restitutus)» همانند ثابت بن قره و ابنهیثم از مفهوم «حرکت» بهره گرفت. [۶۰]
خیام، «شرح ما اشکل من مصادرات کتاب اقلیدس»، ج۱، ص۱۸۳-۱۸۴، همراه خیامینامه.
۲.۲.۶ - ویتاله جوردانوویتاله جوردانو (۱۶۳۳-۱۷۱۱م) در کتابی به ایتالیایی که آن نیز «احیاء اقلیدس (Euclide restituto)» نام دارد، متعرض خیام شده، و از این طریق برهانی بر مصادرۀ پنجم ارائه کرده است. [۶۱]
خیام، «شرح ما اشکل من مصادرات کتاب اقلیدس»، ج۱، ص۱۸۴، همراه خیامینامه.
۲.۲.۷ - جان والیسجان والیس (۱۶۱۶-۱۷۰۳م) در بخش دوم از رسالۀ خود با عنوان «برهانهای هندسی بر مصادرۀ پنجم»، ترجمۀ ادوارد پوکاک از برهان مصادرۀ پنجم مذکور در تحریر منسوب به نصیرالدین طوسی را آورده، و در بخش سوم نیز برهان مستقل خود را با پیشنهاد اصلی جایگزین کرده، و استفاده از مفهوم حرکت را با تأسی به ابن قره و ابنهیثم ارائه کرده است. [۶۲]
خیام، «شرح ما اشکل من مصادرات کتاب اقلیدس»، ج۱، ص۱۸۵-۱۸۶، همراه خیامینامه.
[۶۳]
Greenberg, M J, Euclidean and non،Euclidean Geometries, San Francisco, ۱۹۸۰، ج۱، ص۱۲۳-۱۲۵.
۲.۲.۸ - جیرو لامو ساکریجیرو لامو ساکری (۱۶۶۷-۱۷۳۳م) که «کشف ناخودآگاه» هندسۀ نااقلیدسی به او نسبت داده میشود، بر این اثر والیس دست یافت و در کتاب خود با عنوان «اقلیدس عاری از هرگونه نقص (Euclides ab omni naevo vindicates)» هر دو برهان منسوب به نصیرالدین طوسی و والیس را به نقد کشید و چهارضلعی خیام را با همان حالتبندیهای او ارائه کرد. [۶۴]
روزنفلد، ب ا و ا پ یوشکویچ، نظریة الخطوط المتوازیة فی المصادر العربیة مابین القرنین الثالث و الثامن للهجرة، ج۱، ص۱۸۶، ترجمۀ سامی شلهوب و کمال نجیب عبدالرحمان، حلب، ۱۴۰۹ق/۱۹۸۹م.
[۶۵]
Greenberg, M J, Euclidean and non،Euclidean Geometries, San Francisco, ۱۹۸۰، ج۱، ص۱۲۵-۱۲۷.
«زندگینامه [۶۶]
.Dictionary of Scientific Biography, New York, ۱۹۷۱، ج۱۲، ص۵۶
تا از این چهارضلعیها توسط خیام و نصیرالدین طوسی بررسی شده بودند. که امروزه با نام وی شناخته میشوند.پس از او یوهان هاینریش لامبرت (۱۷۲۸-۱۷۷۷م) اثر ساکری و مؤلفان پس از او را مستقیماً یا دستکم از طریق رسالۀ دکتری کلوگل که جامع بسیاری از براهین پیش از خود بود، به دست آورد. او هم در کارهای خود از چهارضلعیهای پیشگفته بهره برد. [۶۷]
Greenberg, M J, Euclidean and non،Euclidean Geometries, San Francisco, ۱۹۸۰، ج۱، ص۱۲۷.
۲.۳ - نظریهپردازان هندسههای نااقلیدسیدر سدۀ ۱۹م هندسههای نااقلیدسی توسط هندسهدانانی نظیر گاوس (۱۷۷۷-۱۸۸۵م)، یانوش بویویی (۱۸۰۲-۱۸۶۰م)، و نیکلای لباچفسکی (۱۷۹۲-۱۸۵۶م) ابداع شدند که در همۀ آنها تمامی مقدمات اقلیدس به جز اصل توازی پذیرفته میشد و سرانجام در ۱۸۶۸م بلترامی ثابت کرد که اصل توازی به وسیلۀ دیگر مقدمات و قضایای اقلیدس قابل اثبات نیست؛ از اینرو در فضای هندسۀ اقلیدسی همواره به یک اصل توازی یا اصلی همارز آن نیازمندیم. [۶۸]
Greenberg, M J, Euclidean and non،Euclidean Geometries, San Francisco, ۱۹۸۰، ج۱، ص۱۸.
[۶۹]
Greenberg, M J, Euclidean and non،Euclidean Geometries, San Francisco, ۱۹۸۰، ج۱، ص۱۴۰-۱۴۷.
[۷۰]
Greenberg, M J, Euclidean and non،Euclidean Geometries, San Francisco, ۱۹۸۰، ج۱، ص۱۷۸.
۳ - فهرست منابع(۱) ابنسینا، النجاة، به کوشش محمدتقی دانشپژوه، تهران، ۱۳۶۴ش. (۲) ابنندیم، الفهرست، به کوشش فلوگل، لایپزیگ، ۱۸۷۱-۱۸۷۲م. (۳) ابنهیثم حسن، حل شکوک کتاب اقلیدس فی الاصول و شرح معانیه، به کوشش فؤاد سزگین، فرانکفورت، ۱۹۸۵م. (۴) ابنهیثم حسن، شرح مصادرات اقلیدس، به کوشش فؤاد سزگین، فرانکفورت، ۲۰۰۰م. (۵) اثیرالدین ابهری مفضل، اصلاح اصول اقلیدس، نسخۀ خطی شم ۵۴۰ کتابخانۀ سپهسالار. (۶) بیرونی ابوریحان، استخراج الاوتار فی الدائرة، حیدرآباد دکن، ۱۳۶۷ق/۱۹۴۸م. (۷) حسامالدین علی بن فضلالله سالار، «مقدمات لتبیین المصادرة التی ذکرها اوقلید فی صدر المقالة الاولی فیما یتعلق بالخطوط المتوازیة»، چ تصویری همراه خیامینامه، به کوشش جلالالدین همایی. (۸) خیام، «شرح ما اشکل من مصادرات کتاب اقلیدس»، همراه خیامینامه. (۹) روزنفلد ب ا و ا پ یوشکویچ، نظریة الخطوط المتوازیة فی المصادر العربیة مابین القرنین الثالث و الثامن للهجرة، ترجمۀ سامی شلهوب و کمال نجیب عبدالرحمان، حلب، ۱۴۰۹ق/۱۹۸۹م. (۱۰) قاضیزادۀ رومی، شرح بر اشکال التأسیس سمرقندی، به کوشش محمد سویسی، تونس، ۱۹۸۴م. (۱۱) قربانی ابوالقاسم، ریاضیدانان ایرانی، تهران، ۱۳۵۰ش. (۱۲) قربانی ابوالقاسم، زندگینامۀ ریاضیدانان دورۀ اسلامی، تهران، ۱۳۶۵ش. (۱۳) قطبالدین شیرازی محمود، درة التاج، نسخۀ خطی شم ۵۶۰ کتابخانۀ سپهسالار. (۱۴) نصیرالدین طوسی، تحریر اصول اقلیدس، چ سنگـی، تهران، ۱۲۹۸ق. (۱۵) نصیرالدین طوسی، تحریر اصول اقلیدس، چ سنگـی، رم، ۱۵۹۴م. (۱۶) نصیرالدین طوسی، الرسالة الشافیة عن الشک فی الخطوط المتوازیة، حیدرآباد دکن، ۱۳۵۹ق. (۱۷) نیریزی فضل، شرح اصول اقلیدس، به کوشش هایبرگ، لایپزیگ، ۱۸۹۹م. (۱۸) همایی جلالالدین، خیامینامه، تهران، ۱۳۴۶ش. (۱۹) Dictionary of Scientific Biography, New York, ۱۹۷۱. (۲۰) GAS. (۲۱) Greenberg, M J, Euclidean and non-Euclidean Geometries, San Francisco, ۱۹۸۰. (۲۲) Heath, Th L, The Thirteen Book of Euclid’s Elements, New York, ۱۹۵۶. (۲۳) Hogendijk, J P,» Al-Nayrīzī’s Own Proof of Euclid’s Parallel Postulate «, Sic Itur ad Astra, Studien zur Geschichte der Mathematik und Naturwissenschaften, Wiesbaden, ۲۰۰۰. (۲۴) Eves, H, An Introduction to the History of Mathematics, New York, ۱۹۶۹. (۲۵) Juschkewitsch, A and B A Rosenfeld, Die Mathematik der länder des ostens im mittelalter, Berlin, ۱۹۶۳. (۲۶) Krause, M,» Stambuler handschriften islamischer mathematiker «, Quellen und Studien zur geschichte der mathematik, astronomie und physic, Frankfurt, ۱۹۳۶. (۲۷) Sabra, A I,» Thabit ibn Qurra on Euclid’s Parallels Postulate «, Journal of the Warburg and, Coutauld Institutes, London, ۱۹۶۸, vol XXXI. (۲۸) Steinschneider, M, Die Europäischen Übersetzungen aus dem Arabischen bis Mitte des ۱۷, Jahrhunderts, Graz, ۱۹۵۶. ۴ - پانویس
۵ - منبعدانشنامه بزرگ اسلامی، مرکز دائرة المعارف بزرگ اسلامی، برگرفته از مقاله «تووازی، اصل»، شماره۶۱۴۵. |